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SHORT ABSTRACT

(For Information Retrieval)

* A hydrodynamic model of plasma turbulence is developed. The cascade
concept is utilized for the problem of closure. The spectra of kinetic and
electrostatic energies are investigated for both the collisional and cellision-
less cases. The anomalous diffusion, called Bohm diffusion, is also derived,
and found to play an important role in the nonlinear transport properties of
the problem.



1. INTRODUCTION

There are several areas of marked similarity between the nonlinear
wave interactions in electron-ion gas plasmas and in electron-hole solid plasmas.
Such a similarity in turbulence has been demonstrated by Betsy Ancker-Johnson1
in solid plasmas by an experiment equivalent to that in gas plasmas, and has
been stressed by Hoh2 on theoretical considerations. Theories3 on turbulence
in gas and solid plasmas have been very sketchy, and up to date, only some
phenomenological and quasilinear considerations have been treated, valid for a
weak turbulence. In the following, we attempt a hydrodynamical model of strong
turbulence in the aim of analyzing the nonlinear interactions gcross the indivi-
dual spectra and between the spectra of kinetic and electrostatic energies. 1In
view of the similarity in turbulence bhetween the solid and gas plasmas, as
mentioned above, we shall retain the notations of gas plasmas in our theoretical
development, and shall not attempt to discriminate the singular distinctions of

solid plasmas.

2. CASCADE SYSTEM

We consider a quasineutral plasma consisting of ions and electrons.
The ions have a velocity u, a charge e and a mass M. A magnetic field of
constant strength 0,0,B, has a cyclotron frequency Q% = eB/M, énd is assumed
large compared to the pressure force. The electrons are hot, and assume a
Boltzmann distribution

no= oy, wxp(¥/a)
for the number density n for electrons or ions, no is the average dengity, a
is the phase velocity n
a = (Kle/M)*?

with an electron temperature T, and the Boltzmann constant K. Further W is the

product of the self-consistent electric potential by e/M. Write the Navier-

Stokes equation of motion and the equation of continuity for the fluctuations



transverse to the magnetic field:
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Here Y 1is the kinematic viscosity, & 1is an antisymmetric unit tensor, and
Y =o0,0,1.
+Using-the .cascade .decomposition
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where )

E°= - a vy’ ind  E'=-—avy

~

represent the self-consistent electric fields multiplied by e/M.

The variables ng and, Y’o are called the large scale fluctua-
tions, and the variables eil¢n$-ylare called the small scale fluctuations.

The system of equations (3) and (4) has been derived from (1), upon
substituting for (2) and on the basis of the following assumptions:

(i) The variables %Oand ‘fovary slowly and the variables g«' and V'
vary rapidly, so. that a variable transition scale é can be used to distinguish
between the parts by a local average, denoted by <~~r> . A general
average over an infinite length will be denoted by a bar. This is the assump~
tion known as the quasi~stationarity assumption.

(ii) The turbulent motions are isotropic
in the plane perpendicular to the magnetic field. The quantities 25 %,’to°
and V’o are homogeneous generally, but the quantities u/ %ﬂ are only locally
homogeneous, i.e., within an interval'ﬁ", as their averages have been so de-
fined.

The equations of kinetic and potential energies are derived by
multiplying (3a) and (3b) by ui:and ?’orespectively, by averaging and using

the assumptions (i) and (ii):

02 o
T 2= - [% + (v+ Vk,)R(] a)
D P2 °
$ ZF- L[4 - AT (s4)
where
%:— %?50
or identically
=T
f/?.= ‘;tvg
as shown from averaging (3b). We have denoted
R' = Qu/og)®, T = (w§)7
K = RO(/azbo)/ \7 = \Ta(k:w)
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and written

@ 2 fogpuy, = v, R (72)
W-wp>P = AT %)

The expressions (6) and (7) are transport functiopns: more speci-

fically i;' is a production function, transforming the kinetic energy into
the potential energy in the form of electrostatic fluctuations. %Lﬁi° and
Aé]'° are kinetic and potential transfer functions, describing the transfer
of energy across the kinetic and potential spectra respectively.

The equations (5) represepnt the evolutién of the kinetic and poten-
tial energy spectra. In the universal range, i.e., in'the range of not too
small 7@ , the rate of change of energy in the portion (0,k) of the spectrum
is not very much different from that in the whole spectrum (O, 0o ) which is

a constant in equilibrium. Under such circumstances, we simplify (5) to
o
g+ (Drg)R = £ + R (=)

"t NT = - % (26)

[>5]

noting that

as, by definition, there is no net energy transfer in the whole spectrum.

3. TRANSPORT FUNCTIONS
The transfer functions (7) involve the statistical effects from
the fluctuations %/ and ¥/ which are calculated by integrating (4a).
During this procedure, it is important to note that the functions (7) contain
a coupling with %f or ¥° to its first power, and therefore the integration
of (4a) should select terms of such a coupling only, for the general average
to make a non zero contribution, all other terms having no contribution.
Hence, we find the stresses in (3) and (7):
(P fox > =~ vhu®
w'- vy’ = P)\fé 7 e

yielding, by a general average,



u,"’; <M,; Bui/ﬁ,?) = _% Mo‘; \72“%

and T——y - %&_532,37_17
Tw-v¥s = - PP
, = Aij°
The terms Vzl;é"z and 7% pox have been dropped on account of the homo-

geneity assumption (ii). From the above operations, we find

v, = —Z—J:Z/z uto) w'(c)> [ T (104)

M=+ [Tk Gulo) wp)> (108)
Yoo
In the derivation of (lOa) from (4a), we have dropped the viscous effect.

(b) The production function (6b), on the other hand, does not in-
volve a coupling with %° and ‘#o . Therefore, the determination of %’ from
(4a), for the purpose of evaluating (6b), should select terms without a
coupling, as any term with a coupling with ge°or W to its first power
would vanish by a general average. Hence we find the production function

(6b) to be

A L CON (10c)

again we have dropped the viscous effect.

4. TRANSPORT COEFFICIENTS
The time integration: of the auto-correlations of velocity and
field fluctuations define the transport coefficients
in (10). They are very similar.
Using the Fourier transform of a function truncated within a time
interval 7 and a length interval )( , with
X = ﬂf#)/Tﬁfs

we can write

£ x ” (-1
2 - dW-f)T
wlox) wltiy) = x [[dodd |uoh)]* < §
-9
where the bar with superscripts (t,x) denotes an average over time and space
within the above mentioned truncation intervals. Further é—t'z‘E; and

x-x’= kut and the Lagangian time integration gives
~o LI Y |
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Here we have introduced the approximation 1% W W

Similarly we conclude that

_f:alt (o) W toadt = 7 w;' (u'?s

[ar (£10) E)y em T = 1 LED
Hence (10a) and (10c) become
ho= FaT (W U
$ = F o (CE'® vé)

Introduce the spectral functions F(k) and G(k) for the kinetic and poten-

tial emergies respectlvely We can write

LE- fur iR [
;Z/oéé,éf' T° =

and reduce (lla) to

(2a)

Since

and
(Elz>: 6?,2<(\7)U,)2)
=4«22£tb£é2§-*=—a2(]”-7—7



we can rewrite (11b) in the form

8 = A(7-T7) (1z2£)
with
)\B___ %%zw:/ (‘/zc.)

the diffusion coefficient of Bohm. It is found to be proportional to

149

. , in contrast to the classical diffusion across the magnetic field which

-2
is proportional to U% . The formula (12¢) has been proposed by Bohm
without demonstration. His proposed formula contained an empirical numerical
coefficient smaller than in (12c).

Formula (12b) determines

$ = o (zd)

= DO

which substitution into (8b) produces
° /12¢€
g = AT 029
The evdluation oflAk'according to (10b) requires equally a
Lagrangian time integration,with the parameter & in (11a) replaced by a
variable relaxation frequency Qﬁt and we find
[ e W) wleh = 2x [4k F/er (134)
The relaxation frequency ¥ is to be determlned by the very
cascade process (5b) which introduced ‘Ak . We write such a process for
the energy band Gdk, according to (5b)°
¥ _ 2
WGdh = N+ A, ) 287G Ak
or simply :
* o~ 2
as
A
N >> /\g
in the spectral region dominated by %ﬁ
We rewrite the system (13), with the consideration of (10b), as
follows: o
= = 2

yielding the solution



L o> -2 )%
M= (ma)E ([ P #)
The formulas (12) = and (l4) are the important expressions of

transport coefficients needed in the determimation of the spectra.

5. ENERGY SPECTRA
With the use of (12b), (12d) and (12e), we can reduce (8) to the

system

(V+ Y )R® + MT = ¢ | f£-vR (15a)
(A +M)T°= v, p= T (s4)

determining the flow of energy across and between the spectra. Each spec-
trum F or G possesses a source, a sink and a nonlinear transfer across the
spectrum. The source maintains the high Reynolds number of turbulence,
in such a way that its structure does not appear directly in the universal
range of the spectrum (range of large k), but its amount has to balance the
total rate of energy dissipation which was written on the right hand sides
of respective equations (15a) and (15b). The sink is a dissipation of
thermal origin: it is‘VRé proportional to the molecular viscosity due to
collisions in the F-spectrum, and is ABIO proportional to the Bohm
diffusion in the G-spectrum. It is to be remarked that fhe Bohm diffusion
can also be considered as of thermal nature, since )ﬁi is proportional
to a®= Kzl/%4 , according to (l2c). Hente the smallest scale of
the G-spectrum is the Larmor radius a(@c or AB/Q%, . Across each indivi-
dual spectrum, there exists an energyﬁtransfer characteristic of the non-
linear interactions. This transfer is %Ro in the F-spectrum and /\kT°
in the G-spectrum. This description completes the energy flow in the G-
spectrum, as indicated by (15b). However, the transfer of electrosdtatic
energy has to be driven by the kinetic energy, requiring a coupling term of
equal value
[=]

& AT
see (12e). This coupling is an additional loss to the F-spectrum. In this
way, we have completed the flow of energy in the F-spectrum, as indicated by

(15a).



6. SPECTRUM IN A COLLISIONLESS PLASMA

The equations (15) represent a system of rather complicated and
comprehensive dynamical processes. Simplifications are necessary for their
solutions. To this end, consider first the case where the collision is
negligible. The F-spectrum transfers its energy across the spectrum by an
amount ‘%:Kf » to be converted into electrostatic energy. The latter
perpetuates its full pattern (15b). 1In order to assure this flow effect-
ively, the F-spectrum, "Wwhich plays the role of a driving force, should have
a high Reynolds number, énd therefore should be in the inertial range,
while the G-spectrum, having a low Reynolds number, is in the dissipative
range, in view of the dominant Bohm diffusion causing an early drop of the

G=-spectrum.
The interactions between an inertial F-spectrum and a dissi-

pative G-spectrum can be simply described by a differential form of (15),

written as follows: oA R° dT°
\}k —Zé— -— /\ — = O
B db 6)
A JT°
_d—.& - A = 0
dk T & 44
and obtained by the approximations
R o, It =7T, /\’Q«)\B
An addition of the two equations (16) gives
y dR° 4N -
k dk Ak

or, with the use of (12a) and (14), - .
z(n/3)i‘ ,éq'(fmo{aé F)(\édﬁ F/é~72$ T = "003

yielding the solution ¢

F oo (2m)”® 02 A7 (174)
in the inertial subrange. It entails from (14) and (15b)

G = (271:/3)1/3 n W, )\B.y_ﬁ..g (/74)
in the dissipative subrange.

The spectral law A-s , as predicted by (17b), has been verified

by experiments. Dimensional arguments based on the parameters a and Q{

have proposed earlier a spectral law, forprovisional experimental usage,

-10-



-2 4 -5
q—.—: CO’M/JZLQ o k (/76)
Since a spectrum should have its magnitude dependent on the rate

of dissipation, the proposed formula (l7c¢) cannot be fully valid.

7. SPECTRUM IN A COLLISIONAL PLASMA
The collisjion is assumed to dominate the coupling term é&b ,
decoupling the two energy equations (15a) and (15b). The F-spectrum in
the inertial subrange is determined by (l5a), réduced to
73 R®=¢&
giving the solution
F o= (3/271:);% (¢ wc)"f £* 08
Under the inertial regime (18) of the F-spectrum, the G-spectrum
is determined by (15b), rewritten in the form
7" = 7 ()‘s"')\k)_/

or, after integration and use of (l4).

G By R L p <] )
where ‘
6 = (27/275)/+, | ’I%B = (g_ ¢, //\Bg..)%

The formula (19) for the G-spéctrum reduces to its inertial law for fé<x A%

3 -y 5 3/a
G = ,.f_ 7(56%) £’ (20a)
and to its dissipative law, for £ » kB ,

3 W -z -9/2
G= 47 E7ATy % (204)
The transitions from the inertial law (20a) to the dissipative law (20b)

) . -2
occurs at the  Critical wave-number @ /3% .
B

8. CONCLUSIONS
By means of a hydrodynamié model, valid for a plasma of hot
electrons and cold ions, we have established the development of spectra of

kinetic and electrostatic energies. The nonlinear interactions have been

-11-



described by two transfer functions wvalid for the nonlinear transfer of
modes across each spectrum, and by a production function serving the coupling
between the two spectra. The closure problem, as characteristic to any
nonlinear system, has of course to be solved, and in the present theory, the
approximation is resorted to the cascade concept. The concept helped in

the derivation of the equations for the energy spectra, and in the formula-
tion of a "turbulent relaxation frequency'. The latter frequency is very
important in determining the structure of turbulent transport coefficients
entering in all the above nonlinear transport phenomena. Finally the
equations of energy spectra are solved for the collisonal and collisionless
cases, Some of the theoretical results have been confirmed by experiments
in gas plasmas. It seems that experiments in solid plasmas, which often
-are simpler, should soon be able to check the theoretical predictions

more fully.

=12=
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